已知椭圆上一点
与椭圆的两个焦点
的连线互相垂直.
(1)求离心率和准线方程;
(2)求的面积.
(本小题共13分)
为了调查某厂2000名工人生产某种产品的能力,随机抽查了位工人某天生产该产品的数量,产品数量的分组区间为
,
,
,
,
,频率分布直方图如图所示.已知生产的产品数量在
之间的工人有6位.
(Ⅰ)求;
(Ⅱ)工厂规定从生产低于20件产品的工人中随机的选取2位工人进行培训,则这2位工
人不在同一组的概率是多少?
(本小题共12分)
在中,角
所对的边分别为
,满足
,且
的面积为
.
(Ⅰ)求的值;
(Ⅱ)若,求
的值.
(本小题满分14分)
若一个数列各项取倒数后按原来的顺序构成等差数列,则称这个数列为调和数列.已知数列是调和数列,对于各项都是正数的数列
,满足
.
(Ⅰ)求证:数列是等比数列;
(Ⅱ)把数列中所有项按如图所示的规律排成一个三角形数表,
当时,求第
行各数的和;
(Ⅲ)对于(Ⅱ)中的数列,若数列
满足
,求证:数列
为等差数列.
(本小题满分13分)
已知中心在原点,焦点在轴上的椭圆
的离心率为
,且经过点
,过点
的直线
与椭圆
相交于不同的两点
.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存直线,满足
?若存在,求出直线
的方程;若不存在,请说明理由.
(本小题满分14分)
已知函数,
.
(Ⅰ)若函数在
处取得极值,试求
的值,并求
在点
处的切线方程;
(Ⅱ)设,若函数
在
上存在单调递增区间,求
的取值范围.