已知二次函数f(x)=ax2+bx+1(a,b∈R,a>0),设方程f(x)=x的两个实数根为x1和x2.
(1)如果x1<2<x2<4,设二次函数f(x)的对称轴为x=x0,求证:x0>﹣1;
(2)如果|x1|<2,|x2﹣x1|=2,求b的取值范围.
(本小题12分)设命题实数
满足
,其中
,命题
实数
满足
.
(Ⅰ)若,且
为真,求实数
的取值范围;
(Ⅱ)若是
的充分不必要条件,求实数
的取值范围.
(本小题满分12分)设上的两点,已知
,
,若
且椭圆的离心率
短轴长为2,
为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k的值;(Ⅲ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由
(本小题满分12分)设函数.0
(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)若对任意的不等式| f′(x)|≤a恒成立,求a的取值范围.
(本小题满分12分)数列(
)的前
项和
满足
.
(Ⅰ)求;
(Ⅱ)设(
)的前
项和为
,求
.
(本小题满分12分)函数(
)的图象经过原点,且
和
分别是函数
的极大值和极小值.
(Ⅰ)求;
(Ⅱ)过点作曲线
的切线,求所得切线方程.