已知定义域为R的函数f(x)=是奇函数.
(1)求a,b的值;
(2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.
为了在夏季降温和冬季供暖时减少能源损耗 ,房屋的屋顶和外墙需要建造隔热层,某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用(单位:万元)与隔热层厚度
(单位:cm)满足关系:
,若不建隔热层,每年能源消耗费用为8万元.设
为隔热层建造费用与20年的能源消耗费用之和.
(Ⅰ)求的值及
的表达式;
(Ⅱ)隔热层修建多厚时,总费用达到最小,并求最小值
已知函数
(Ⅰ)若在区间上
是增函数,求实数
的取值范围;
(Ⅱ)若是
的极值点,求
在
上的最大值和最小值.
已知函数(
,
)为偶函数,若对于任意
都有
成立,且
的最小值是为
.将函数
的图象向右平移
个单位后,得到函数
,求
的单调递减区间,确定其对称轴。
是否存在,
使等式
,
同时成立?若存在,求出
的值;若不存在,请说明理由。
(1)已知角满足
,
,
,
,求
.
(2)已知:,求证: