某单位用2160万元购得一块空地,计划在该空地上建造一栋至少10层,每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).
(1)写出楼房平均综合费用y关于建造层数x的函数关系式;
(2)该楼房应建造多少层时,可使楼房每平方米的平均综合费用最少?最少值是多少?
(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用/建筑总面积)
(本小题满分13分)已知函数.
(1)求函数的最小正周期和单调递增区间;
(2)若在中,角
,
,
的对边分别为
,
,
,
,
为锐角,且
,求
面积
的最大值.
(本小题满分14分)已知a>0,函数.
(1)讨论函数f(x)的单调性;
(2)当函数f(x)存在极值时,设所有极值之和为g(a),求g(a)的取值范围.
(本小题满分12分)椭圆过点
,离心率为
,左右焦点分别为
,过点
的直线交椭圆于
两点。
(1)求椭圆的方程;
(2)当的面积为
时,求
的方程.
(本小题满分12分)某学校有男老师45名,女老师15名,按照分层抽样的方法组建了一个4人的学科攻关小组。
(1)求某老师被抽到的概率及学科攻关小组中男、女老师的人数;
(2)经过一个月的学习、讨论,这个学科攻关小组决定选出2名老师做某项实验,方法是先从小组里选出1名老师做实验,该老师做完后,再从小组内剩下的老师中选1名做实验,求选出的2名老师中恰有1名女老师的概率.
(本题12分)如图,在四棱锥E-ABCD中,AB⊥平面BCE,DC⊥平面BCE,AB=BC=CE=2CD=2,;
(1)求证:平面ADE⊥平面ABE;
(2)求三棱锥A-BDE的体积.