从参加环保知识竞赛的学生中抽出60名,将其成绩整理后画出的频率分布直方图如下.观察图形,回答下列问题:
(1)49.5——69.5这一组的频率和频数分别为多少?
(2)估计这次环保知识竞赛成绩的中位数及平均成绩.(精确到小数点后一位)
在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;
若掷出2点或3点,乙盒中放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3
次,设分别表示甲,乙,丙3个盒中的球数.
(1)求依次成公差大于0的等差数列的概率;
(2)记,求随机变量
的概率分布列和数学期望.
在中,
为
边上的点
,且
.
(1)求;
(2)若,求
.
已知函数
(1)当时,求
的极小值;
(2)若直线对任意的
都不是曲线
的切线,求
的取值范围;
(3)设,求
的最大值
的解析式.
已知,
,
.
(1)若,
,求
的外接圆的方程;
(2)若以线段为直径的圆
过点
(异于点
),直线
交直线
于点
,线段
的中点为
,试判断直线
与圆
的位置关系,并证明你的结论.
数列的前
项和为
,数列
是首项为
,公差不为零的等差数列,且
成等比数列.
(1)求的值;
(2)求数列与
的通项公式;
(3)求证: