(1)已知,
.若“
”是“
”的充分不必要条件,求实数
的取值范围;
(2)已知两个关于x的一元二次方程mx2-4x+4=0和x2-4mx+4m2-4m-5=0,求两方程的根都是整数的充要条件.
某同学在研究性学习中,收集到某制药厂车间工人数(单位:十人)与药品产量(单位:万盒)的数据如表所示:
工人数:x(单位:十人) |
1 |
2 |
3 |
4 |
药品产量:y(单位:万盒) |
3 |
4 |
5 |
6 |
(1)请画出如表数据的散点图;
(2)参考公式,根据表格提供的数据,用最小二乘法求出y关于x的线性回归方程y=x+
;(参考数据
i2=30,
=50)
(3)试根据(2)求出的线性回归方程,预测该制药厂车间工人数为45时,药品产量是多少?
如图,在四棱锥中,底面
是
且边长为
的菱形,侧面
是等边三角形,且平面
⊥底面
.
(1)若为
的中点,求证:
平面
;
(2)求证:;
(3)求二面角的大小.
如图,在底面是直角梯形的四棱锥S-ABCD中,
(1)求四棱锥S-ABCD的体积;
(2)求证:
(3)求SC与底面ABCD所成角的正切值。
如图,在长方体ABCD—A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点,连结ED,EC,EB和DB.
(1)求证:ED⊥平面EBC;
(2)求三棱锥E-DBC的体积.
在正方体ABCD-A1B1C1D1中,M、N、P分别是AD1、BD和B1C的中点,
求证:(1)MN∥平面CC1D1D. (2)平面MNP∥平面CC1D1D.