在平面直角坐标系中,
的边
所在的直线方程是
,
(1)如果一束光线从原点射出,经直线
反射后,经过点
,求反射后光线所在直线的方程;
(2)如果在中,
为直角,求
面积的最小值.
(本小题满分12分)
如图所示, 四棱锥P-ABCD的底面是边长为1的正方形,PA^CD,PA = 1, PD=,E为PD上一点,PE = 2ED.
(Ⅰ)求证:PA^平面ABCD;
(Ⅱ)求二面角D-AC-E的余弦值;
(Ⅲ)在侧棱PC上是否存在一点F,使得BF // 平面AEC?若存在,指出F点的位置,并证明;若不存在,说明理由.
(本小题满分12分)
盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球. 规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得-1分 . 现从盒内任取3个球
(Ⅰ)求取出的3个球中至少有一个红球的概率;
(Ⅱ)求取出的3个球得分之和恰为1分的概率;
(Ⅲ)设为取出的3个球中白色球的个数,求
的分布列和数学期望.
(本小题满分12分)
设ABC的内角A、B、C的对边分别为a、b、c,cos(A—C)+cos B=
,b2=ac,求B.
(本小题满分14分)
已知中心在原点,焦点在x轴上的椭圆C的离心率为,且经过点(-1,
),过点P(2,1)的直线l与椭圆C在第一象限相切于点M.
(1)求椭圆C的方程;
(2)求直线l的方程以及点M的坐标;
(3)是否存在过点P的直线l与椭圆C相交于不同的两点A,B,满足
·
=
?若存在,求出直线l
的方程;若不存在,请说明理由.
(本小题满分14分)
已知函数f (x)=(2-a)(x-1)-2lnx,(a∈R,e为自然对数的底数)
(1)当a=1时,求f (x)的单调区间;
(2)若函数f (x)在(0,)上无零点,求a的最小值