已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中轴的正半轴重合,且两坐标系有相同的长度单位,圆C的参数方程为
(
为参数),点Q的极坐标为
。
(1)化圆C的参数方程为极坐标方程;
(2)直线过点Q且与圆C交于M,N两点,求当弦MN的长度为最小时,直线
的直角坐标方程。
如图,PA为⊙O的切线,A为切点,PBC是过点O的割线,PA=10,PB=5。
求:(1)⊙O的半径;
(2)s1n∠BAP的值。
已知函数。
(1)若,求
在
处的切线方程;
(2)若在R上是增函数,求实数
的取值范围。
已知椭圆的一个顶点为B(0,4),离心率
,直线
交椭圆于M,N两点。
(1)若直线的方程为
,求弦MN的长;
(2)如果△BMN的重心恰好为椭圆的右焦点F,求直线方程的一般式。
如图,在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2。
(1)求证:CE∥平面PAB;
(2)求四面体PACE的体积.