抛物线交
轴于
两点,交
轴于点
,对称轴为直线
。且A、C两点的坐标分别为
,
.
(1)求抛物线的解析式;
(2)在对称轴上是否存在一个点,使
的周长最小.若存在,请求出点
的坐标;若不存在,请说明理由.
已知:△内接于⊙
,过点
作直线
,
为非直径的弦,且
。
(1)求证:是⊙
的切线;
(2)若,
,连结
并延长交
于点
,求由弧
、线段
和
所围成的图形的面积.
如图,等边三角形ABC中,D是AB边上的动点,以CD为一边,向上作等边三角形EDC,连结AE.
求证:(1)△ACE≌△BCD;
(2)AE∥BC.
如图,司机发现前方十字路口有红灯,立即减速,在B处踩刹车,此时测得司机看正前方人行道的边缘上A处的俯角为30°,汽车滑行到达C处时停车,此时测得司机看A处的俯角为60°。已知汽车刹车后滑行距离BC的长度为3米,求司机眼睛P与地面的距离。(结果保留根号)
为响应“植树造林、造福后人”的号召,某班组织部分同学义务植树棵,由于同学们的积极参与,实际参加的人数比原计划增加了
,结果每人比原计划少栽了
棵,问实际有多少人参加了这次植树活动?