问题提出:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?
问题探究:不妨假设能搭成种不同的等腰三角形,为探究
之间的关系,我们可以从特殊入手,通过试验、观察、类比,最后归纳、猜测得出结论.
探究一:
用3根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?
此时,显然能搭成一种等腰三角形。所以,当时,
用4根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?
只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形
所以,当时,
用5根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?
若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形
若分为2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形
所以,当时,
用6根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?
若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形
若分为2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形
所以,当时,
综上所述,可得表①
![]() |
3 |
4 |
5 |
6 |
![]() |
1 |
0 |
1 |
1 |
探究二:
用7根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?
(仿照上述探究方法,写出解答过程,并把结果填在表②中)
分别用8根、9根、10根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?(只需把结果填在表②中)
![]() |
7 |
8 |
9 |
10 |
![]() |
|
|
|
|
你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,……
解决问题:用根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?
(设分别等于
、
、
、
,其中
是整数,把结果填在表③中)
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
|
|
|
问题应用:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(要求写出解答过程)
其中面积最大的等腰三角形每个腰用了__________________根木棒。(只填结果)
计算:
(1)(﹣2)2×7﹣62÷(﹣3)×
(2)先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣3ab2+2,其中a=﹣2,b=2.
(1)计算:(﹣4a2b4c)÷(a2b3)•2ab2
(2)计算:
(3)先化简,再求值:[(xy+2)(xy﹣2)﹣2x2y2+4]÷(xy),其中x=10,.
观察下列各式:
13+23=;
13+23+33=36=;
13+23+33+43=100=;
(1)计算:13+23+33+43+53的值;
(2)计算:13+23+33+43+…+103的值;
(3)猜想:13+23+33+43+…+n3的值.
在下面的集合中选出两个整数和两个分数进行加减混合运算,并使运算结果为整数.
一家电信公司推出两种移动电话计费方法:计费方法A是每月收月租费58元,通话时间不超过分钟的部分免费,超过
分钟的按每分钟0.25元加收通话费;计费方法B是每月收取月租费88元,通话时间不超过
分钟的部分免费,超过
分钟的按每分钟0.20元收通话费.现在设通话时间是
分钟.
(1)当通话时间超过分钟时,请用含
的代数式表示计费方法A的通话费用.
(2)当通话时间超过分钟时,请用含
的代数式表示计费方法B的通话费用.
(3)用计费方法A的用户一个月累计通话360分钟所需的话费,若改用计费方法B,则可通话多少分钟?
(4)请你分析,当通话时间超过多少分钟时采用计费方法B合算?