商场计划拨款9万元,从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出场价分别为甲种每台1500元,乙种每台2100元,丙种每台2500元.
(1)若商场同时购进其中两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案;
(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号的电视机的方案中,为使销售时获利最多,该选择哪种进货方案?
教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制第二排灯的开关已坏(闭合开关时灯也不亮).
(1)将4个开关都闭合时,教室里所有灯都亮起的概率是 ;
(2)在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯,于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排与第三排灯的概率.
如图,已知抛物线 与直线 交于 、 两点,点 是抛物线上 、 之间的一个动点,过点 分别作 轴、 轴的平行线与直线 交于点 和点 .
(1)求抛物线的解析式;
(2)若 为 中点,求 的长;
(3)如图,以 , 为边构造矩形 ,设点 的坐标为 ,请求出 , 之间的关系式.
如图,在 中, 为 上一点,且 ,以 为直径作 ,交 于点 ,连接 ,过 作 于点 , .
(1)求证: 是 的切线;
(2)若 , ,求 的直径 的长.
如图,已知 中, ,把 绕 点沿顺时针方向旋转得到 ,连接 , 交于点 .
(1)求证: ;
(2)若 , ,当四边形 是菱形时,求 的长.
为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为 (分 ,且 ,将其按分数段分为五组,绘制出以下不完整表格:
组别 |
成绩 (分 |
频数(人数) |
频率 |
一 |
|
2 |
0.04 |
二 |
|
10 |
0.2 |
三 |
|
14 |
|
四 |
|
|
0.32 |
五 |
|
8 |
0.16 |
请根据表格提供的信息,解答以下问题:
(1)本次决赛共有 名学生参加;
(2)直接写出表中 , ;
(3)请补全下面相应的频数分布直方图;
(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为 .