直三棱柱中,
,
分别是
的中点,
,
为棱
上的点.
(1)证明:;
(2)是否存在一点,使得平面
与平面
所成锐二面角的余弦值为
?若存在,说明点
的位置,若不存在,说明理由.
(1)如图1是某个多面体的表面展开图.
①请你写出这个多面体的名称,并指出图中哪三个字母表示多面体的同一点;
②如果沿BC、GH将展开图剪成三块,恰好拼成一个矩形,那么△BMC应满足什么条件?(不必说理)
(2)如果将一个三棱柱的表面展开图剪成四块,恰好拼成一个三角形,如图2,那么该三棱柱的侧面积与表面积的比值是多少?为什么?(注:以上剪拼中所有接缝均忽略不计)
已知:如图,点A(3,4)在直线y=kx上,过A作AB⊥x轴于点B.
(1)求k的值;
(2)设点B关于直线y=kx的对称点为C点,求ΔABC外接圆的面积;
(3)抛物线y=-1与x轴的交点为Q,试问在直线y=kx上是否存在点P,使得
∠CPQ=∠OAB,如果存在,请求出P点的坐标;如果不存在,请说明理由.
用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为米,面积为
平方米.
(1)求关于
的函数关系式;
(2)当为何值时,围成的养鸡场面积为60平方米?
(3)能否围成面积为70平方米的养鸡场?如果能,求出其边长;如果不能,说明理由.
为了提高学生写好汉字的积极性,某校组织全校学生参加汉字听写比赛,比赛成绩从高到低只分A、B、C、D四个等级.若随机抽取该校部分学生的比赛成绩进行统计分析,并绘制了如下的统计图表:
根据图表的信息,回答下列问题:
(1)本次抽查的学生共有 名;
(2)表中和
所表示的数分别为:
,
,并在图中补全条形统计图;
(3)若该校共有名学生,请你估计此次汉字听写比赛有多少名学生的成绩达到B级及B级以上?
一辆客车从甲地出发前往乙地,平均速度(千米/小时)与所用时间
(小时)的函数关系如图所示,其中
.
(1)直接写出与
的函数关系式;
(2)若一辆货车同时从乙地出发前往甲地,客车比货车平均每小时多行驶千米,
小时后两车相遇.
①求两车的平均速度;
②甲、乙两地间有两个加油站、
,它们相距
千米,当客车进入
加油站时,货车恰好进入
加油站(两车加油的时间忽略不计),求甲地与
加油站的距离.