某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售,销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?
(·湖北衡阳,25题,分)(本小题满分8分)某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体实验.测得成人服药后血液中药物深度(微克/毫升)与服药时间
小时之间的函数关系如图所示(当
时,
与
成反比).
(1)根据图象分别求出血液中药物浓度上升和下降阶段与
之间的函数关系式;
(2)问血液中药物浓度不低于4微克/毫升的持续时间为多少小时?
(·湖北武汉,20题,分)(本题8分)如图,已知点A(-4,2)B(-1,-2),□ABCD的对角线交于坐标原点O
(1)请直接写出点C、D的坐标
(2)写出从线段AB到线段CD的变换过程
(3)直接写出□ABCD的面积
(·湖南益阳)已知点P是线段AB上与点A不重合的一点,且AP<PB.AP绕点A逆时针旋转角α(0°<α≤90°)得到AP1,BP绕点B顺时针也旋转角α得到BP2,连接PP1、PP2.
(1)如图1,当α=90°时,求∠P1PP2的度数;
(2)如图2,当点P2在AP1的延长线上时,求证:△P2P1P∽△P2PA;
(3)如图3,过BP的中点E作l1⊥BP,过BP2的中点F作l2⊥BP2,l1与l2交于点Q,连接PQ,求证:P1P⊥PQ.
(·湖北武汉,20题,分)(本题8分),如图,已知点A(-4,2)B(-1,-2),□ABCD的对角线交于坐标原点O
(1)请直接写出点C、D的坐标
(2)写出从线段AB到线段CD的变换过程
(3)直接写出□ABCD的面积
(·湖北衡阳,23题,分)(本小题满分6分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(3,2)B(3,5)C(1,2).
(1)在平面直角坐标系中画出△ABC关于轴对称的△A1B1C1;
(2)把△ABC绕点A顺时针旋转一定的角度,得图中的△AB2C2,点C2在AB上.
①旋转角为多少度?
②写出点B2的坐标.