已知动圆过定点,且在y轴上截得弦长为4.
(1)求动圆圆心的轨迹Q的方程;
(2)已知点为一个定点,过E作斜率分别为
、
的两条直线交轨迹
于点
、
、
、
四点,且
、
分别是线段
、
的中点,若
,求证:直线
过定点.
已知圆的方程x2+y2=25,点A为该圆上的动点,AB与x轴垂直,B为垂足,点P分有向线段BA的比λ=,
(1)求点P的轨迹方程并化为标准方程形式;
(2)写出轨迹的焦点坐标和准线方程。
解不等式:(1)log 2≤0.
(2)≥0
已知函数(其中
是常数).
(1)若当时,恒有
成立,求实数
的取值范围;
(2)若存在,使
成立,求实数
的取值范围;
甲、乙两地相距12km.A车、B车先后从甲地出发匀速驶向乙地.A车从甲地到乙地需行驶15min;B车从甲地到乙地需行驶10min.若B车比A车晚出发2min:
(1)分别写出A、B两车所行路程关于A车行驶时间的函数关系式;
(2) A、B两车何时在途中相遇?相遇时距甲地多远?
(1)已知,求
的值;
(2)若,且
,求
的值.