已知动点P与两定点
、
连线的斜率之积为
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)若过点
的直线l交轨迹C于M、N两点,且轨迹C上存在点E使得四边形OMEN(O为坐标原点)为平行四边形,求直线l的方程.
已知函数 
R).
(Ⅰ)若
,求曲线
在点
处的的切线方程;
(Ⅱ)若
对任意 
恒成立,求实数a的取值范围.
已知中心在坐标原点,焦点在
轴上的椭圆C;其长轴长等于4,离心率为
.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若点
(0,1), 问是否存在直线
与椭圆
交于
两点,且
?若存在,求出
的取值范围,若不存在,请说明理由.
如图,三棱锥
中,侧面
底面
,
,且
,
.(Ⅰ)求证:
平面
;
(Ⅱ)若
为侧棱PB的中点,求直线AE与底面
所成角的正弦值.
若函数
在定义域内存在区间
,满足
在
上的值域为
,则称这样的函数
为“优美函数”.
(Ⅰ)判断函数
是否为“优美函数”?若是,求出
;若不是,说明理由;
(Ⅱ)若函数
为“优美函数”,求实数
的取值范围.
设
关于
的不等式,
的解集是
,
函数
的定义域为
。若“
或
”为真,“
且
”为假,求
的取值范围。