游客
题文

如图所示,绝缘轨道由弧形轨道和半径为R=0.16m的圆形轨道、水平轨道连接而成,处于竖直面内的匀强电场中,PQ左右两侧电场方向相反,其中左侧方向竖直向下,场强大小均为103V/m,不计一切摩擦。质量为m=0.1kg的带正电小球可看作质点)从弧形轨道某处由静止释放,恰好能通过圆形轨道最高点,小球带电荷量q="1." 0×10-3C,g取10m/s2。求:

(1)小球释放点的高度h
(2)若PQ右侧某一区域存在垂直纸面向里的匀强磁场(图中未画出),磁感应强度B=4×102T,小球通过圆形轨道后沿水平轨道运动到P点进入磁场,从竖直边界MN上的A点离开时速度方向与电场方向成30o,已知PQ、MN边界相距L=0.7m,求:
①小球从P到A经历的时间
②若满足条件的磁场区域为一矩形,求最小的矩形面积。

科目 物理   题型 计算题   难度 中等
知识点: 磁感应强度 α粒子散射实验
登录免费查看答案和解析
相关试题

如图甲所示,倾角θ =37°的粗糙斜面固定在水平面上,斜面足够长。一根轻弹簧一端固定在斜面的底端,另一端与质量m=1.0kg的小滑块(可视为质点)接触,滑块与弹簧不相连,弹簧处于压缩状态。当t=0时释放滑块。在0~0.24s时间内,滑块的加速度a随时间t变化的关系如图乙所示。已知弹簧的劲度系数N/m,当t=0.14s时,滑块的速度v1=2.0m/s。g取l0m/s2,sin37°=0.6,cos37°=0.8。弹簧弹性势能的表达式为(式中k为弹簧的劲度系数,x为弹簧的形变量)。求:

图甲图乙
(1)斜面对滑块摩擦力的大小f;
(2)t=0.14s时滑块与出发点间的距离d;
(3)在0~0.44s时间内,摩擦力做的功W。

如图所示,空间存在竖直向上的匀强磁场,磁感应强度B=0.50T,两条光滑的平行金属导轨固定在同一水平面内,导轨间距l=0.40m,左端接有阻值R=0.40Ω的电阻。一质量m=0.10kg、阻值r=0.10Ω的金属棒MN放置在导轨上。金属棒在水平向右的拉力F作用下,沿导轨做速度v=2.0m/s的匀速直线运动。求:

(1)通过电阻R的电流I;
(2)拉力F的大小;
(3)撤去拉力F后,电阻R上产生的焦耳热Q。

有人设想:可以在飞船从运行轨道进入返回地球程序时,借飞船需要减速的机会,发射一个小型太空探测器,从而达到节能的目的。如图所示,飞船在圆轨道Ⅰ上绕地球飞行,其轨道半径为地球半径的k倍(k>1)。当飞船通过轨道Ⅰ的A点时,飞船上的发射装置短暂工作,将探测器沿飞船原运动方向射出,并使探测器恰能完全脱离地球的引力范围,即到达距地球无限远时的速度恰好为零,而飞船在发射探测器后沿椭圆轨道Ⅱ向前运动,其近地点B到地心的距离近似为地球半径R。以上过程中飞船和探测器的质量均可视为不变。已知地球表面的重力加速度为g。

(1)求飞船在轨道Ⅰ运动的速度大小;
(2)若规定两质点相距无限远时引力势能为零,则质量分别为M、m的两个质点相距为r时的引力势能,式中G为引力常量。在飞船沿轨道Ⅰ和轨道Ⅱ的运动过程,其动能和引力势能之和保持不变;探测器被射出后的运动过程中,其动能和引力势能之和也保持不变。
①求探测器刚离开飞船时的速度大小;
②已知飞船沿轨道Ⅱ运动过程中,通过A点与B点的速度大小与这两点到地心的距离成反比。根据计算结果说明为实现上述飞船和探测器的运动过程,飞船与探测器的质量之比应满足什么条件。

甲图是我国自主研制的200mm离子电推进系统, 已经通过我国“实践九号”卫星空间飞行试验验证,有望在2015年全面应用于我国航天器。离子电推进系统的核心部件为离子推进器,它采用喷出带电离子的方式实现飞船的姿态和轨道的调整,具有大幅减少推进剂燃料消耗、操控更灵活、定位更精准等优势。离子推进器的工作原理如图乙所示,推进剂氙原子P喷注入腔室C后,被电子枪G射出的电子碰撞而电离,成为带正电的氙离子。氙离子从腔室C中飘移过栅电极A的速度大小可忽略不计,在栅电极A、B之间的电场中加速,并从栅电极B喷出。在加速氙离子的过程中飞船获得推力。
已知栅电极A、B之间的电压为U,氙离子的质量为m、电荷量为q。

(1)将该离子推进器固定在地面上进行试验。求氙离子经A、B之间的电场加速后,通过栅电极B时的速度v的大小;
(2)配有该离子推进器的飞船的总质量为M,现需要对飞船运行方向作一次微调,即通过推进器短暂工作让飞船在与原速度垂直方向上获得一很小的速度Δv,此过程中可认为氙离子仍以第(1)中所求的速度通过栅电极B。推进器工作时飞船的总质量可视为不变。求推进器在此次工作过程中喷射的氙离子数目N。
(3)可以用离子推进器工作过程中产生的推力与A、B之间的电场对氙离子做功的功率的比值S来反映推进器工作情况。通过计算说明采取哪些措施可以增大S,并对增大S的实际意义说出你的看法。

如图所示,质量为M=2kg的足够长的U型金属框架abcd,放在光滑绝缘水平面上,导轨ab边宽度L=1m。电阻不计的导体棒PQ,质量m=1kg,平行于ab边放置在导轨上,并始终与导轨接触良好,棒与导轨间动摩擦因数μ=0.5,棒左右两侧各有两个固定于水平面上的光滑立柱。开始时PQ左侧导轨的总电阻R=1Ω,右侧导轨单位长度的电阻为r0=0.5Ω/m。以ef为界,分为左右两个区域,最初aefb构成一正方形,g取10m/s2

(1)如果从t=0时,在ef左侧施加B=kt(k=2T/s),竖直向上均匀增大的匀强磁场,如图甲所示,多久后金属框架会发生移动(设最大静摩擦力等于滑动摩擦力).
(2)如果ef左右两侧同时存在B=1T的匀强磁场,方向分别为竖直向上和水平向左,如图乙所示。从t=0时,对框架施加一垂直ab边的水平向左拉力,使框架以a=0.5m/s2向左匀加速运动,求t=2s时拉力F多大
(3)在第(2)问过程中,整个回路产生的焦耳热为Q=0.6J,求拉力在这一过程中做的功。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号