游客
题文

甲乙两个学校高三年级分别有1200人,1000人,为了了解两个学校全体
高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两个学校一共抽取了110名学生
的数学成绩,并作出了频数分布统计表如下:
甲校:

分组
[70,80)
[80,90)
[90,100)
[100,110)
频数
3
4
8
15
分组
[110,120)
[120,130)
[130,140)
[140,150]
频数
15
x
3
2

 
乙校:

分组
[70,80)
[80,90)
[90,100)
[100,110)
频数
1
2
8
9
分组
[110,120)
[120,130)
[130,140)
[140,150]
频数
10
10
y
3

 
(1)计算x,y的值.
(2)若规定考试成绩在[120,150]内为优秀,请分别估计两个学校数学成绩的优秀率;
(3)由以上统计数据填写下面2×2列联表,并判断是否有90%的把握认为两个学校的数学成绩有差异.

 
甲校
乙校
总计
优秀
 
 
 
非优秀
 
 
 
总计
 
 
 

 
参考公式:
临界值表

P(K≥k0
0.10
0.05
0.010
k0
2.706
3.841
6.635

 

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

F 1 , F 2 分别是椭圆 E : x 2 + y 2 b 2 = 1 ( 0 < b < 1 ) 的左、右焦点,过 F 1 的直线 l E 相交于 A , B 两点,且 A F 1 , A B , B F 2 成等差数列.

(Ⅰ)求 A B .

(Ⅱ)若直线 l 的斜率为1,求 b 的值.

为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老人,结果如下:

1.png

(Ⅰ)估计该地区老年人中,需要志愿提供帮助的老年人的比例;
(Ⅱ)能否有99℅的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?
(Ⅲ)根据(Ⅱ)的结论,能否提出更好的调查办法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由。
附:

2.png

3.png

如图,已知四棱锥 P-ABCD 的底面为等腰梯形, AB CD , ACBD ,垂足为 H PH 是四棱锥的高。

(Ⅰ)证明:平面 PAC 平面 PBD ;
(Ⅱ)若 AB= 6 , APB=ADB= 60°,求四棱锥 P-ABCD 的体积。

设等差数列 { a n } 满足 a 3 = 5 a 10 = - 9
(Ⅰ)求 { a n } 的通项公式;
(Ⅱ)求 { a n } 的前 n 项和 S n 及使得 S n 最大的序号 n 的值。

不等式选讲已知 a , b , c 均为正数,证明: a 2 + b 2 + c 2 + ( 1 a + 1 b + 1 c ) 2 6 3 ,并确定 a , b , c 为何值时,等号成立。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号