如图,点N是△ABC的边BC延长线上的一点,∠ACN=2∠BAC, 过点A作AC的垂线交CN于点P.
(1)若∠APC=30°,求证:AB=AP;
(2)若AP=8,BP=16,求AC的长;
(3)若点P在BC的延长线上运动,∠APB的平分线交AB于点M.你认为∠AMP的大小是否发生变化?若变化,请说明理由;若不变化,求出∠AMP的大小.
如图,已知 的圆心为点 ,抛物线 过点 ,与 交于 、 两点,连接 、 ,且 , 、 两点的纵坐标分别是2、1.
(1)请直接写出点 的坐标,并求 、 的值;
(2)直线 经过点 ,与 轴交于点 .点 (与点 不重合)在该直线上,且 ,请判断点 是否在此抛物线上,并说明理由;
(3)如果直线 与 相切,请直接写出满足此条件的直线解析式.
如图,在矩形 中, , , 平分 ,分别交 , 的延长线于点 , ;连接 ,过点 作 ,分别交 , 于点 , .
(1)求 的长;
(2)求证: .
我市某超市销售一种文具,进价为5元 件.售价为6元 件时,当天的销售量为100件.在销售过程中发现:售价每上涨0.5元,当天的销售量就减少5件.设当天销售单价统一为 元 件 ,且 是按0.5元的倍数上涨),当天销售利润为 元.
(1)求 与 的函数关系式(不要求写出自变量的取值范围);
(2)要使当天销售利润不低于240元,求当天销售单价所在的范围;
(3)若每件文具的利润不超过 ,要想当天获得利润最大,每件文具售价为多少元?并求出最大利润.
如图,在 中, , 为 上一点, , , .
(1)求 的长;
(2)求 的值.
一个不透明的口袋中有三个完全相同的小球,球上分别标有数字 ,1,2.第一次从袋中任意摸出一个小球(不放回),得到的数字作为点 的横坐标 ;再从袋中余下的两个小球中任意摸出一个小球,得到的数字作为点 的纵坐标 .
(1)用列表法或树状图法,列出点 的所有可能结果;
(2)求点 在双曲线 上的概率.