如图,是圆台上底面圆
的直径,
是圆
上不同于
的一点,
是下底面圆
上一点,过
的截面垂直与下底面,
为
的中点,又
.
(1)求证:平面
;
(2)求二面角的余弦值.
(本小题满分15分)如图,摄影爱好者S在某公园A处,发现正前方B处有一立柱,测得立柱顶端O的仰角和立柱底部B的俯角均为设S的眼睛距地面的距离
米.
(1)求摄影者到立柱的水平距离和立柱的高度;
(2)立柱的顶端有一长2米的彩杆MN绕其中点O在S与立柱所在的平面内旋转.摄影者有一视角范围为的镜头,在彩杆转动的任意时刻,摄影者是否都可以将彩杆全部摄入画面?说明理由.
选修4—2:矩阵与变换
变换是逆时针旋转
的旋转变换,对应的变换矩阵是
;变换
对应用的变换矩阵是
(Ⅰ)求点在
作用下的点
的坐标;
(Ⅱ)求函数的图象依次在
,
变换的作用下所得曲线的方程。
选修4—1几何证明选讲.
如图,在△ABC中,CM是∠ACB的平分线,△AMC的外接圆O交BC于点N.
求证:
(本小题满分16分)已知数列满足
.
(1)求数列的通项公式;
(2)对任意给定的,是否存在
(
)使
成等差数列?若存在,用
分别表示
和
(只要写出一组);若不存在,请说明理由;
(3)证明:存在无穷多个三边成等比数列且互不相似的三角形,其边长为.
(本小题满分16分)已知函数的图象上,以N(1,n)为切点的切线的倾斜角为
.
(1)求m,n的值;
(2)是否存在最小的正整数k,使得不等式≤k-1991对于
恒成立;
(3)求证:≤
.