如图,是圆台上底面圆
的直径,
是圆
上不同于
的一点,
是下底面圆
上一点,过
的截面垂直与下底面,
为
的中点,又
.
(1)求证:平面
;
(2)求二面角的余弦值.
(本小题满分12分)已知函数是定义在
上的偶函数.若
时,
.
(Ⅰ)当时,求函数
的解析式;
(Ⅱ)画出的简图;(要求绘制在答题卷的坐标纸上);
(Ⅲ)结合图像写出的单调区间(只写结论,不用证明).
(本小题满分12分)已知函数,其中
.
(Ⅰ)用定义证明函数在
上单调递减;
(Ⅱ)结合单调性,求函数在区间
上的最大值和最小值.
(本小题满分10分)已知集合,
.
(Ⅰ)求,
;
(Ⅱ)已知,若
,求实数
的取值范围.
(本题满分14分)数列中,
, 前n项和
.
(1)求数列的通项公式;
(2)设(
),
,若对任意
,总存在
使
成立,求出t的取值范围.
(本题满分13分) 如图,已知四棱锥中,底面
是直角梯形,
,
,
,
,
平面
,
.
(1)求证:平面
;
(2)求证:平面
;
(3)若是
的中点,求三棱锥
的体积.