有一个容量为100的某校毕业生起始月薪的样本数据的分组及各组的频数如下:
起始月薪(百元) |
[13,14) |
[14,15) |
[15,16) |
[16,17) |
[17,18) |
[18,19) |
[19,20) |
[20,21] |
频数 |
7 |
11 |
26 |
23 |
15 |
8 |
4 |
6 |
(1)列出样本的频率分布表;
(2)画出频率分布直方图和频率分布折线图;
(3)根据频率分布估计该校毕业生起始月薪低于2000元的频率.
已知关于的一元二次方程
,求使方程有两个大于零的实数根的充要条件
求过点,且与椭圆
有相同焦点的椭圆的标准方程.
设椭圆C:(a〉b>0)的左焦点为
,椭圆过点P(
)
(1)求椭圆C的方程;
(2)已知点D(l,0),直线l:与椭圆C交于A、B两点,以DA和DB为邻边的四边形是菱形,求k的取值范围.
已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点B恰好是抛物线的焦点,
离心率等于.直线
与椭圆C交于
两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ) 椭圆C的右焦点是否可以为
的垂心?若可以,求出直线
的方程;
若不可以,请说明理由.
已知椭圆(
)的一个焦点坐标为
,且长轴长是短轴长的
倍.
(1)求椭圆的方程;
(2)设为坐标原点,椭圆
与直线
相交于两个不同的点
,线段
的中点为
,若直线
的斜率为
,求△
的面积.