如图,已知正三棱柱
的底面边长是
,
、E是
、BC的中点,AE=DE
(1)求此正三棱柱的侧棱长;(2)正三棱柱表面积;
已知函数,
(1)求函数的最小正周期;
(2)若,求
的值.
已知焦点在x轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点A (0,)为圆心,1为半径的圆相切,又知C的一个焦点与A关于y = x对称.
(1)求双曲线C的方程;
(2)若Q是双曲线线C上的任一点,F1,F2为双曲线C的左、右两个焦点,从F1引∠F1QF2的平分线的垂线,垂足为N,试求点N的轨迹方程;
(3)设直线y =" mx" + 1与双曲线C的左支交于A、B两点,另一直线l经过M (–2,0)及AB的中点,求直线l在y轴上的截距b的取值范围.
已知函数,
。如果函数
没有极值点,且
存在零点。(1)求
的值;(2)判断方程
根的个数并说明理由;(3)设点
是函数
图象上的两点,平行于AB 的切线以
为切点,求证:
。
已知等差数列的首项为a,公差为b;等比数列
的首项为b,公比为a,其中a,
,且
.
(1)求a的值;
(2)若对于任意,总存在
,使
,求b的值;
(3)在(2)中,记是所有
中满足
,
的项从小到大依次组成的数列,又记
为
的前n项和,
的前n项和,求证:
≥