下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.
解:设x2-4x=y
原式=(y+2)(y+6)+4 (第一步)
=y2+8y+16 (第二步)
=(y+4)2 (第三步)
=(x2-4x+4)2 (第四步)
回答下列问题:
(1)该同学第二步到第三步运用了因式分解的_______.
A.提取公因式 |
B.平方差公式 |
C.两数和的完全平方公式 |
D.两数差的完全平方公式 |
(2)该同学因式分解的结果是否彻底?________.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果_________ .
(3)请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1进行因式分解.
把抛物线 先向右平移4个单位长度,再向下平移5个单位长度得到抛物线 .
(1)直接写出抛物线 的函数关系式;
(2)动点 能否在抛物线 上?请说明理由;
(3)若点 , 都在抛物线 上,且 ,比较 , 的大小,并说明理由.
5月20日九年级复学啦 为了解学生的体温情况,班主任张老师根据全班学生某天上午的《体温监测记载表》,绘制了如下不完整的频数分布表和扇形统计图.
学生体温频数分布表
组别 |
温度 |
频数(人数) |
甲 |
36.3 |
6 |
乙 |
36.4 |
|
丙 |
36.5 |
20 |
丁 |
36.6 |
4 |
请根据以上信息,答案下列问题:
(1)频数分布表中 ,该班学生体温的众数是 ,中位数是 ;
(2)扇形统计图中 ,丁组对应的扇形的圆心角是 度;
(3)求该班学生的平均体温(结果保留小数点后一位).
在平行四边形 中, 为 的中点,请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.
(1)如图1,在 上找出一点 ,使点 是 的中点;
(2)如图2,在 上找出一点 ,使点 是 的一个三等分点.
(1)先化简,再求值: ,其中 .
(2)解不等式组 ,并把它的解集在数轴上表示出来.
将抛物线 向下平移6个单位长度得到抛物线 ,再将抛物线 向左平移2个单位长度得到抛物线 .
(1)直接写出抛物线 , 的解析式;
(2)如图(1),点 在抛物线 (对称轴 右侧)上,点 在对称轴 上, 是以 为斜边的等腰直角三角形,求点 的坐标;
(3)如图(2),直线 , 为常数)与抛物线 交于 , 两点, 为线段 的中点;直线 与抛物线 交于 , 两点, 为线段 的中点.求证:直线 经过一个定点.