某餐厅中,一张桌子可坐6人,有以下两种摆放方式:
(1)当有张桌子时,两种摆放方式各能坐多少人?
(2)一天中午餐厅要接待98位顾客共同就餐,但餐厅只有25张这样的餐桌,若你是这个餐厅的经理,你打算选择哪种方式来摆放餐桌,为什么?
(1)-
+
(2)
如图,凸四边形ABCD中,点E在边CD上,连接AE、BE.给出下列五个关系式:①AD∥BC;②DE=EC; ③∠1=∠2;④∠3=∠4;⑤AD+BC="AB" .将其中的三个关系式作为已知条件、另外两个关系式作为结论,可以构成一些命题(下面各小题的命题须符合此要求).
(1)共计能够成个命题;
(2)写出三个真命题:
①如果、、,那么、;
②如果、、,那么、;
③如果、、,那么、.
请选择上述三个命题中的一个写出它是真命题的理由:
证明:我选择证明命题(填序号),理由如下:
(第28题图)
(3)请写出一个假命题(不必说明理由):
如果、、,那么、.
(1)探究新知:如图1,已知△ABC与△ABD的面积相等, 试判断AB与CD的位置关系,并说明理由.
(2)结论应用:如图2,点M,N在反比例函数(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F. 试证明:MN∥EF.
(3)变式探究:如图3,点M,N在反比例函数(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,过点M作MG⊥x轴,过点N作NH⊥y轴,垂足分别为E、F、G、H. 试证明:EF ∥GH.
数学课上,李老师出示了这样一道题目:如图,正方形的边长为
,
为边
延长线上的一点,
为
的中点,
的垂直平分线交边
于
,交边
的延长线于
.当
时,
与
的比值是多少?
经过思考,小明展示了一种正确的解题思路:过作直线平行于
交
,
分别于
,
,如图
,则可得:
,因为
,所以
.可求出
和
的值,进而可求得
与
的比值.
(1) 请按照小明的思路写出求解过程.
(2) 小东又对此题作了进一步探究,得出了的结论.你认为小东的这个结论正确吗?如果正确,请给予证明;如果不正确,请说明理由.
如图,正比例函数的图象与反比例函数
在第一象限的图象交于
点,过
点作
轴的垂线,垂足为
,已知
的面积为1.
(1)求反比例函数的解析式;
(2)如果为反比例函数在第一象限图象上的点(点
与点
不重合),且
点的横坐标为1,在
轴上求一点
,使
最小.