如图,抛物线的顶点为M,对称轴是直线x=1,与x轴的交点为A(-3,0)和B.将抛物线
绕点B逆时针方向旋转90°,点M1,A1为点M,A旋转后的对应点,旋转后的抛物线与y轴相交于C,D两点.
(1)写出点B的坐标及求抛物线的解析式:
(2)求证:∠AMA1=180°
(3)设点P是旋转后抛物线上DM1之间的一动点,是否存在一点P,使四边形PM1MD的面积最大.如果存在,请求出点P的坐标及四边形PM1MD的最大面积;如果不存在,请说明理由.
如图,抛物线 与 轴交于点 和点 ,与 轴交于点 ,顶点为 ,连接 , , 与抛物线的对称轴 交于点 .
(1)求抛物线的表达式;
(2)点 是第一象限内抛物线上的动点,连接 , ,当 时,求点 的坐标;
(3)点 是对称轴 右侧抛物线上的动点,在射线 上是否存在点 ,使得以点 , , 为顶点的三角形与 相似?若存在,求点 的坐标;若不存在,请说明理由.
如图1,在 中, , ,点 , 分别在边 , 上,且 ,连接 .现将 绕点 顺时针方向旋转,旋转角为 ,如图2,连接 , , .
(1)当 时,求证: ;
(2)如图3,当 时,延长 交 于点 ,求证: 垂直平分 ;
(3)在旋转过程中,求 的面积的最大值,并写出此时旋转角 的度数.
因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量 (桶 与销售单价 (元 之间满足一次函数关系,其图象如图所示.
(1)求 与 之间的函数表达式;
(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利润 销售价 进价)
如图, 为 的直径,射线 交 于点 ,点 为劣弧 的中点,过点 作 ,垂足为 ,连接 .
(1)求证: 是 的切线;
(2)若 , ,求阴影部分的面积.
在4月23日“世界读书日”来临之际,某校为了了解学生的课外阅读情况,从全校随机抽取了部分学生,调查了他们平均每周的课外阅读时间 (单位:小时).把调查结果分为四档, 档: ; 档: ; 档: ; 档: .根据调查情况,给出了部分数据信息:
① 档和 档的所有数据是:7,7,7.5,10,7,10,7,7.5,7,7,10.5,10.5;
②图1和图2是两幅不完整的统计图.
根据以上信息解答问题:
(1)求本次调查的学生人数,并将图2补充完整;
(2)已知全校共1200名学生,请你估计全校 档的人数;
(3)学校要从 档的4名学生中随机抽取2名作读书经验分享,已知这4名学生1名来自七年级,1名来自八年级,2名来自九年级,请用列表或画树状图的方法,求抽到的2名学生来自不同年级的概率.