游客
题文

如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A、C间的一个动点(含端点),过点P作PF⊥BC于点F.点D、E的坐标分别为(0,6),(-4,0),连接PD,PE,DE.

(1)请直接写出抛物线的解析式;
(2)小明探究点P的位置发现:当点P与点A或点C重合时,PD与PF的差为定值.进而猜想:对于任意一点P,PD与PF的差为定值.请你判断该猜想是否正确,并说明理由
(3)小明进一步探究得出结论:若将“使△PDE的面积为整数”的点P记作“好点”,
①请直接写出所有“好点”的个数,
②如果使△PDE的周长最小的点P也是一个“好点”,请求出△PDE的周长最小时“好点”的坐标.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

小红是某中学的七年级学生,放学后从学校骑自行车回家,学校在她现在位置的北偏东30°方向,距离此处1.5km的地方,她的家在她现在的位置的南偏西45°的方向,距离此处2km,邮局在她现在的位置的北偏西60°的方向,距离此处3km。根据这些信息画一张表示各处位置的简图

已知:矩形ABCD的顶点坐标为A(1,1),B(2,1),C(2,3),D(1,3)在平面直角坐标系标出个点。
(1)将矩形向上平移2个单位,画出相应的图形,并写出各点的坐标;
(2)将矩形各顶点的横、纵坐标都乘以-1,画出相应的图形;
(3)在(1)、(2)中,你发现了什么?

如图,点A坐标为(-1,1),将此小船向左平移2个单位后,画出图形,并指出A,B,C,D各点坐标.

夏令营组织学员到某一景区游玩,老师交给同学一张画有直角坐标系和标有A、B、C、D 四个景点位置的地图,指出:今天我们游玩的景点E是新开发的,地图上还没来得及标注,但已知这个景点E满足:①与景点A、C和景点B、D所在的两条直线等距离;②到B、C两景点等距离。请你在平面直角坐标系中,画出景点E的位置,并标明坐标(用整数表示)。

如图,在直角坐标系中,已知点P0的坐标为(1,0),将线段OP0按逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,…,OPn(n为正整数)

(1)求点P6的坐标;
(2)求△P5OP6的面积;
(3)我们规定:把点Pn(xn,yn)(n=0,1,2,3…)的横坐标xn、纵坐标yn都取绝对值后得到的新坐标(|xn|,|yn|)称之为点Pn的“绝对坐标”.根据图中点Pn的分布规律,请你猜想点Pn的“绝对坐标”,并写出来

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号