已知:如图,△ABC中,∠BCA的平分线CD与AB边的垂直平分线GD相交于点D,DE⊥AC,DF⊥BC,垂足分别是E、F。求证:AE=BF;
如图,已知抛物线 与 轴交于点 , (点 位于点 的左侧), 为顶点,直线 经过点 ,与 轴交于点 .
(1)求线段 的长;
(2)平移该抛物线得到一条新抛物线,设新抛物线的顶点为 .若新抛物线经过点 ,并且新抛物线的顶点和原抛物线的顶点的连线 平行于直线 ,求新抛物线对应的函数表达式.
某学校准备购买若干台 型电脑和 型打印机.如果购买1台 型电脑,2台 型打印机,一共需要花费5900元;如果购买2台 型电脑,2台 型打印机,一共需要花费9400元.
(1)求每台 型电脑和每台 型打印机的价格分别是多少元?
(2)如果学校购买 型电脑和 型打印机的预算费用不超过20000元,并且购买 型打印机的台数要比购买 型电脑的台数多1台,那么该学校至多能购买多少台 型打印机?
某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择.为了估计全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:
(1)求参加这次调查的学生人数,并补全条形统计图;
(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;
(3)若该校共有600名学生,试估计该校选择“足球”项目的学生有多少人?
如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.
(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为 ;
(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).
如图,点 , , , 在一条直线上, , , .求证: .