已知:定义在R上的函数,对于任意实数a, b都满足
,且
,网当
.
(Ⅰ)求的值;
(Ⅱ)证明在
上是增函数;
(Ⅲ)求不等式的解集.
(本小题满分12分)
已知正方形的中心在原点,四个顶点都在函数
图象上,且正方形的一个顶点为
.
(Ⅰ)试写出正方形另外三个顶点的坐标,并求,
的值;
(II)求函数的单调增区间.
(本小题满分12分)
解关于的不等式
,其中
,且
.
附加题以数列的任意相邻两项为坐标的点
(
)都在一次函数
的图象上,数列
满足
.
(1)求证:数列是等比数列;
(2)设数列,
的前
项和分别为
,且
,求
的值.
(12分)如图,直角三角形ABC的顶点坐标A()、B(0,
),顶点C在x轴上,点P为线段OA的中点,设圆M是△ABC的外接圆,若DE是圆M的任意一条直径,试探究
是否是定值?若是,求出定值;若不是,请说明理由.
(12分) 已知平面区域恰好被面积最小的圆C:
及其内部覆盖.
(1)求圆C的方程;
(2)斜率为1的直线与圆C交于不同两点A、B,满足
,求直线
的方程.