为响应荆州市“创建全国文明城市”号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过 ,另外三边由 长的栅栏围成.设矩形 空地中,垂直于墙的边 ,面积为 (如图).
(1)求 与 之间的函数关系式,并写出自变量 的取值范围;
(2)若矩形空地的面积为 ,求 的值;
(3)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如下表).问丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理由.
甲 |
乙 |
丙 |
|
单价(元 棵) |
14 |
16 |
28 |
合理用地( 棵) |
0.4 |
1 |
0.4 |
问题:已知 、 均为锐角, , ,求 的度数.
探究:(1)用6个小正方形构造如图所示的网格图(每个小正方形的边长均为 ,请借助这个网格图求出 的度数;
延伸:(2)设经过图中 、 、 三点的圆弧与 交于 ,求 的弧长.
探究函数 与 的相关性质.
(1)小聪同学对函数 进行了如下列表、描点,请你帮他完成连线的步骤;观察图象可得它的最小值为 ,它的另一条性质为 ;
|
|
|
|
|
1 |
|
2 |
|
3 |
|
|
|
|
|
|
2 |
|
|
|
|
|
(2)请用配方法求函数 的最小值;
(3)猜想函数 的最小值为 .
为了参加“荆州市中小学生首届诗词大会”,某校八年级的两班学生进行了预选,其中班上前5名学生的成绩(百分制)分别为:八(1)班86,85,77,92,85;八(2)班79,85,92,85,89.通过数据分析,列表如下:
班级 |
平均分 |
中位数 |
众数 |
方差 |
八(1) |
85 |
|
|
22.8 |
八(2) |
|
85 |
85 |
19.2 |
(1)直接写出表中 , , 的值;
(2)根据以上数据分析,你认为哪个班前5名同学的成绩较好?说明理由.
(1)求不等式组 的整数解;
(2)先化简,后求值 ,其中 .