某校数学教师为调查本校2014届学生的高考数学成绩情况,用简单随机抽样的方法抽取20名学生的成绩,样本数据的茎叶图如图所示,但部分数据不小心丢失,同时得到如下所示的频率分布表:
分数段 |
![]() |
![]() |
![]() |
![]() |
![]() |
总计 |
频 数 |
|
|
|
![]() |
|
|
频 率 |
![]() |
![]() |
|
|
|
|
(1)求表中的值及分数在
范围内的学生人数,并估计这次考试全校学生数学成绩的及格率(分数在
内为及格);
(2)从大于等于110分的成绩中随机选2个成绩,求这2个成绩的平均分不小于130分的概率。
已知抛物线,
(1)用配方法确定它的顶点坐标、对称轴;
(2)取何值时,
随
增大而减小?
(3)取何值时,抛物线在
轴上方?
在△ABC中,AB=AC=5,BC=6,求cosB、sinA
当a>0且x>0时,因为,所以
,从而
(当x=
时取等号).记函数
,由上述结论可知:当x=
时,该函数有最小值为2
(1)已知函数y1=x(x>0)与函数,则当x=时,y1+y2取得最小值为
(2)已知函数y1=x+1(x>-1)与函数y2=(x+1)2+4(x>−1),求的最小值,并指出取得该最小值时相应的x的值.
如图是一个圆锥与其侧面展开图,已知圆锥的底面半径是2,母线长是6.
(1)求这个圆锥的高和其侧面展开图中∠ABC的度数;
(2)如果A是底面圆周上一点,从点A拉一根绳子绕圆锥侧面一圈再回到A点,求这根绳子的最短长度.
已知点P(1,-2a)在二次函数y=ax2+6的图象上,并且点P关于x轴的对称点在反比例函数的图象上。
(1)求此二次函数和反比例函数的解析式;
(2)点(-1,4)是否同时在(1)中的两个函数图象上?