如图:已知正方形ABCD的边长为2,且AE⊥平面CDE,AD与平面CDE所成角为.
(1)求证:AB∥平面CDE;
(2)求三棱锥D-ACE的体积.
如图,在长方体
中,点
,
分别在棱
, 上,且
,
.证明:
(1)当 时, ;
(2)点 在平面 内.
某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):
锻炼人次 空气质量等级 |
[0,200] |
(200,400] |
(400,600] |
1(优) |
2 |
16 |
25 |
2(良) |
5 |
10 |
12 |
3(轻度污染) |
6 |
7 |
8 |
4(中度污染) |
7 |
2 |
0 |
(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;
(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);
(3)若某天的空气质量等级为1或2,则称这天"空气质量好";若某天的空气质量等级为3或4,则称这天"空气质量不好".根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?
人次≤400 |
人次>400 |
|
空气质量好 |
||
空气质量不好 |
附: ,
P( K 2≥ k) |
0.050 |
0.010 |
0.001 |
k |
3 |
6.635 |
10.828 |
设等比数列{ a n}满足 , .
(1)求{ a n}的通项公式;
(2)记 为数列{log 3 a n}的前 n项和.若 ,求 m.
如果对任意 ,当 时, 都有 ,则称 是 关联的.
(1)判断和证明 是 关联的吗?是 关联的吗?
(2) 是 关联的,当 时, ,解不等式 .
(3)" 是 关联的,且是 关联的"当且仅当" 是 关联的"
桶圆 分别为左右焦点, 过点 的直线交椭圆于点 且点 在 轴的上方, 在 的中间.
(1) 若 是上顶点, , 求 .
(2) 若 , 且 到 的距离为 , 求直线 的方程.
(3) 求证:对任意的 , 使得 的直线有且仅有一条.