在△ABC中,角A,B,C的对边分别为a,b,c,且满足,
.
(1)求△ABC的面积;
(2)若b+c=5,求a的值.
已知函数
(1)若,求
的值;
(2)若的图像与直线
相切于点
,求
的值;
(3)在(2)的条件下,求函数的单调区间.
如图,在四棱锥
中,
平面
,底面
是菱形,点O是对角线
与
的交点,
是
的中点,
.
(1) 求证:平面
;
(2) 平面平面
;
(3) 当四棱锥的体积等于
时,求
的长.
某校为了解学生的学科学习兴趣,对初高中学生做了一个喜欢数学和喜欢语文的抽样调查,随机抽取了名学生,相关的数据如下表所示:
数学 |
语文 |
总计 |
|
初中 |
![]() |
![]() |
![]() |
高中 |
![]() |
![]() |
![]() |
总计 |
![]() |
![]() |
![]() |
(1) 用分层抽样的方法从喜欢语文的学生中随机抽取名,高中学生应该抽取几名?
(2) 在(1)中抽取的名学生中任取
名,求恰有
名初中学生的概率.
设
(1)求函数的最小正周期和单调递增区间
(2)当
已知函数
(1)求函数f(x)的极值;
(2)如果当时,不等式
恒成立,求实数k的取值范围;
(3)求证.