电影院为了解观看此部电影的观众年龄的情况,在某场次的100名观众中随机调查了20名观众,已知抽到的观众年龄可分成5组:,
,
,
,
,根据调查结果得出年龄情况残缺的频率分布直方图如下图所示。
(1)根据已知条件,补充画完整频率分布直方图,并估计该电影院观看此部电影的观众年龄的平均数;
(2)现在从年龄属于和
的两组中随机抽取2人,求他们属于同一年龄组的概率。
已知为锐角,且
,函数
,数列{
}的首项
.
(1)求函数的表达式;
(2)求数列的前
项和
.
的外接圆半径
,角
的对边分别是
,且
(1)求角和边长
;
(2)求的最大值及取得最大值时的
的值,并判断此时三角形的形状.
已知函数.
(1)若的解集为
,求实数
的值.
(2)当且
时,解关于
的不等式
.
如图,已知⊙O的半径为1,MN是⊙O的直径,过M点作⊙O的切线AM,C是AM的中点,AN交⊙O于B点,若四边形BCON是平行四边形.
(Ⅰ)求AM的长;
(Ⅱ)求sin∠ANC.
已知函数f(x)=alnx+(a≠0)在(0,
)内有极值.
(I)求实数a的取值范围;
(II)若x1∈(0,),x2∈(2,+∞)且a∈[
,2]时,求证:f(x1)﹣f(x2)≥ln2+
.