(本小题满分14分)
已知定义在上的两个函数
的
图象在点
处的切线的斜率为
(1)求的解析式;
(2)试求实数k的最大值,使得对任意恒成立;
(3)若,
求证:
双曲线的左、右焦点分别为
、
,
为坐标原点,点
在双曲线的右支上,点
在双曲线左准线上,
(Ⅰ)求双曲线的离心率;
(Ⅱ)若此双曲线过,求双曲线的方程;
(Ⅲ)在(Ⅱ)的条件下,、
分别是双曲线的虚轴端点(
在
轴正半轴上),过
的直线
交双曲线于点
、
,
,求直线
的方程。
(本小题满分12分)
某旅游点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元。根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出去的自行车就增加3辆。为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得)。
(1)求函数f(x)的解析式及其定义域;
(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?
(本小题满分12分)如图,四边形为矩形,
平面ABE
为
上的点,且
平
面
,
(1)求证:平面
;
(2)求证:平面
;
(3)求三棱锥的体积.
(本小题满分12分)
已知数列的前n项和为
,
,
,等差数列
中,
,且
,又
、
、
成等比数列.
(Ⅰ)求数列、
的通项公式;
(Ⅱ)求数列的前n项和Tn.