游客
题文

已知抛物线
(1)填空:抛物线的顶点坐标是(      ),对称轴是        
(2)已知y轴上一点A(0,-2),点P在抛物线上,过点P作PB⊥x轴,垂足为B.若△PAB是等边三角形,求点P的坐标;
(3)在(2)的条件下,点M在直线AP上.在平面内是否存在点N,使以点O、点A、点M、点N为顶点的四边形为菱形?若存在,直接写出所有满足条件的点N的坐标;若不存在,请说明理由. 

科目 数学   题型 解答题   难度 较难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

如图,是⊙O的直径,弦BC=5,∠BOC=60°,OEAC,垂足为E

(1)求OE的长;
(2)求劣弧AC的长.

已知二次函数的图象与x 轴交于(2,0)、(4,0),顶点到x 轴的距离为3,求函数的解析式。

以直线为对称轴的抛物线过点(3,0),(0,3),求此抛物线的解析式.

已知抛物线<1>求抛物线顶点M的坐标;
 <2>若抛物线与x轴的交点分别为点AB(点A在点B的左边),与y轴交于点C,点N为线段BM上的一点,过点Nx轴的垂线,垂足为点Q.当点N在线段BM上运动时(点N不与点B,点M重合),设NQ的长为t,四边形NQAC的面积为S,求St之间的函数关系式及自变量t的取值范围;
 <3>在对称轴右侧的抛物线上是否存在点P,使△PAC为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.

我们知道三角形三条中线的交点叫做三角形的重心.经过证明我们可得三角形重心具备下面的性质: 重心到顶点的距离与重心到该顶点对边中点的距离之比为2﹕1.请你用此性质解决下面的问题.
已知:如图,点为等腰直角三角形的重心,,直线过点,过三点分别作直线的垂线,垂足分别为点.
<1>当直线平行时(图1),请你猜想线段三者之间的数量关系并证明;
<2>当直线绕点旋转到与不平行时,分别探究在图2、图3这两种情况下,上述结论是否还成立?若成立,请给予证明;若不成立,线段三者之间又有怎样的数量关系?请写出你的结论,不需证明.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号