游客
题文

我们知道三角形三条中线的交点叫做三角形的重心.经过证明我们可得三角形重心具备下面的性质: 重心到顶点的距离与重心到该顶点对边中点的距离之比为2﹕1.请你用此性质解决下面的问题.
已知:如图,点为等腰直角三角形的重心,,直线过点,过 三点分别作直线的垂线,垂足分别为点.              
<1>当直线平行时(图1),请你猜想线段三者之间的数量关系并证明;
<2>当直线绕点旋转到与不平行时,分别探究在图2、图3这两种情况下,上述结论是否还成立?若成立,请给予证明;若不成立,线段三者之间又有怎样的数量关系?请写出你的结论,不需证明.

科目 数学   题型 解答题   难度 中等
知识点: 相似多边形的性质
登录免费查看答案和解析
相关试题

在平面直角坐标系中,已知点A(-3,1),B(-2,0),C(0,1),请在图中画出△ABC,并画出与△ABC关于原点O对称的图形.

如图,在平面直角坐标系中,抛物线y=ax2+bx-4与x轴交于点A (-2,0)和点B,与y轴交于点C, 直线x=1是该抛物线的对称轴。

(1)求抛物线的解析式;
(2)若两动点M, H分别从点A,B以每秒1个单位长度的速度沿x轴同时出发相向而行,当点M到达原点时,点H立刻掉头并以每秒个单位长度的速度向点B方向移动,当点M到达抛物线的对称轴时,两点停止运动,经过点M的直线l⊥x轴,交AC或BC于点P,设点M的运动时间为t秒(t>0),求点M的运动时间t与△APH的面积S的函数关系式,并求出S的最大值。

如图,C是以AB为直径的上一点,过点O作OE⊥AC于点E,过点A作⊙O的切线交OE的延长线于点F,连接CF并延长交BA的延长线于点P.

(1)求证:PC是⊙O的切线;
(2)若AF=1,OA=, 求PC的长。

城市规划期间,欲拆除一电线杆AB(如图所示),已知距电线杆AB水平距离14米的D处有一大坝,背水坡CD的坡度i=2:1,坝高CF为2米,在坝顶C处测得杆顶A的仰角为30°,D,E之间是宽为2米的人行道。(

(1)求BF的长度;
(2)在拆除电线杆AB时,为确保行人安全,是否需将此人行道封上?

某工厂现有甲种原料380千克,乙种原料290千克,计划用这两种原料生产A,B两种产品共50件,已知生产1件A种产品需甲种原料9千克,乙种原料3千克,可获利700元;生产1件B种产品需甲种原料4千克,乙种原料10千克,可获利1200元,设工厂生产A,B两种产品可获总利润是y元,其中甲种产品的生产件数是x,
(1)写出y与x之间的函数关系式;
(2)如何安排A,B两种产品的生产件数,使总利润y有最大值,并求出y的最大值。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号