椭圆C的中心为坐标原点O,焦点在y轴上,离心率e = ,椭圆上的点到焦点的最短距离为1-
, 直线l与y轴交于点P(0,m),与椭圆C交于相异两点A、B,且
.
(1)求椭圆方程;
(2)若,求m的取值范围.
已知在平面直角坐标系中,向量
,且
.(1)设
的取值范围;
(2)设以原点O为中心,对称轴在坐标轴上,以F为右焦点的椭圆经过点M,且取最小值时,求椭圆的方程.
已知双曲线,P是其右支上任一点,F1、F2分别是双曲线的左、右焦点,Q是P F1上的点,N是F2Q上的一点。且有
求Q点的轨迹方程。
在直角坐标平面内,已知点,
是平面内一动点,直线
、
斜率之积为
.
(Ⅰ)求动点的轨迹
的方程;
(Ⅱ)过点作直线
与轨迹
交于
两点,线段
的中点为
,求直线
的斜率
的取值范围.
已知椭圆C过点是椭圆的左焦点,P、Q是椭圆C上的两个动点,且|PF|、|MF|、|QF|成等差数列。
(1)求椭圆C的标准方程;
(2)求证:线段PQ的垂直平分线经过一个定点A;
(3)设点A关于原点O的对称点是B,求|PB|的最小值及相应点P的坐标。