设函数.
(1)写出函数f(x)的最小正周期及单调递增区间;
(2)当时,函数f(x)的最大值与最小值的和为
,求
的值.
已知数列是等差数列,且
,
;又若
是各项为正数的等比数列,且满足
,其前
项和为
,
.
(1)分别求数列,
的通项公式
,
;
(2)设数列的前
项和为
,求
的表达式,并求
的最小值.
已知函数.
(1)当时,求函数
的极值;
(2)求函数的单调区间.
设,将函数
在区间
内的全部极值点按从小到大的顺序排成数列
.
(1)求数列的通项公式;
(2)设,数列
的前
项和为
,求
.
已知,其中向量
,
,
.在
中,角A、B、C的对边分别为
,
,
.
(1)如果三边,
,
依次成等比数列,试求角
的取值范围及此时函数
的值域;
(2) 在中,若
,
,求
的面积.