在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:
摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱.
(1)摸出的3个球为白球的概率是多少?
(2)摸出的3个球为2个黄球1个白球的概率是多少?
(3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?
选修4—5:不等式选讲
设函数.
(1)当时,求函数
的定义域;
(2)若函数的定义域为R,试求
的取值范围.
选修4—4:坐标系与参数方程
在平面直角坐标系xOy中,以O为极点,Ox为极轴建立极坐标系,且两种坐标系长度单位一致. 已知直线l的极坐标方程为,圆C在直角坐标系中的参数方程为
(
为参数),求直线l与圆C的公共点的个数.
(本小题满分14分)如图,在正三棱柱ABC-A1B1C1中,D、E分别为CC1、A1B1的中点.
求证:C1E∥平面A1BD;
(2)求证:平面ABB1A1⊥平面A1BD.
(本小题满分14分) 在△ABC中,a,b,c分别为内角A,B,C的对边,且
(1)求A的大小;
(2)现给出三个条件:①;②a=2;③
.请从中选择两个条件,使得确定的△ABC的面积最大.
已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n∈N +),其中xn为正实数.
(1)用xn表示xn+1;
(2)若x1=4,记an=lg,证明数列{an}成等比数列,并求数列{xn}的通项公式;
(3)若x1=4,bn=xn-2,Tn是数列{bn}的前n项和,证明Tn<3.