如图,在平面直角坐标系中,O是原点,已知A(4,3),P是y轴上的动点,当点O,A,P
三点组成的三角形为等腰三角形时,求出所有符合条件的点P坐标.
(本题8分)如图1,在一个不透明的袋子中装有四个球,分别标有字母A、B、C、D,这些球除了字母外完全相同,此外,有一面白色、另一面黑色、大小相同的四张正方形卡片,每张卡片两面的字母相同,分别标有字母A、B、C、D.最初,摆成如图2的样子,A.D是黑色,B.C是白色.
两次操作后观察卡片的颜色.
(如:第一次取出A、第二次取出B,此时卡片的颜色变成)
(1)求取四张卡片变成相同颜色的概率;
(2)求四张卡片变成两黑两白、并恰好形成各自颜色的矩形的概率.
(本题8分)如图,AB是⊙O的直径,C.D两点在⊙O上,若∠C=45°.
(1)求∠ABD的度数;
(2)若∠CDB=30°,BC=3,求⊙O的半径.
(本题8分)一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.
(1)布袋里红球有多少个?
(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表或画树状图等方法求出两次摸到的球都是白球的概率.
(本小题满分12分)抛物线与x轴交于A ,B两点,且点A在点B的左侧,与y轴交于点C.
(1)当OB=OC时,求此时抛物线函数解析式;
(2)当△ABC为等腰三角形时,求m的值;
(3)若点P与点Q
在(1)中抛物线上,
,
.求
的值.
(本小题满分12分)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不能低于成本单价,且获利不得高于成本的45%,经试销发现,销售量(件)与销售单价
(元)符合一次函数
,且
时,
;
时,
.
(1)求一次函数的表达式;
(2)若该商场获得利润为元,试写出利润
与销售单价
之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
(3)若该商场获得利润不低于500元,试确定销售单价的范围.