无锡市中考体育考试方案公布后,同学们将根据自己平时的运动成绩确定自己的报考项目,下面是小亮同学在近期的两个项目中连续五次测试的得分情况(立定跳远得分统计表和一分钟跳绳的折线图):
统计量 |
平均数 |
极差 |
方差 |
立定跳远 |
8 |
|
|
一分钟跳绳 |
|
2 |
0.4 |
(1)请把立定跳远的成绩通过描点并且用虚线在折线图中画出来.
(2)请根据以上信息,分别将这两个项目的平均数、极差、方差填入下表:
(3)根据以上信息,你认为在立定跳远和一分钟跳绳这两个项目中,小亮应选择哪个项目作为体育考试的报考项目?请简述理由.
如图,已知反比例函数y=(k≠0)的图象经过点(
,8),直线y=-x+b经过该反比例函数图象上的点Q(4,m).
(1)求上述反比例函数和直线的函数表达式;
(2)设该直线与x轴、y轴分别相交于A 、B两点,与反比例函数图象的另一个交点为P,连结0P、OQ,求△OPQ的面积.
某联欢会上有一个有奖游戏,规则如下:有5张纸牌,背面都是喜羊羊头像,正面有2张是笑脸,其余3张是哭脸.现将5张纸牌洗匀后背面朝上摆放到桌上,若翻到的纸牌中有笑脸就有奖,没有笑脸就没有奖.
(1)小芳获得一次翻牌机会,她从中随机翻开一张纸牌.小芳得奖的概率是.
(2)小明获得两次翻牌机会,他同时翻开两张纸牌.小明认为这样得奖的概率是小芳的两倍,你赞同他的观点吗?请用树形图或列表法进行分析说明.(用、
分别代表两张笑脸,
、
、
分别代表三张哭脸)
如图,某风景区的湖心岛有一凉亭A,其正东方向有一棵大树B,小明想测量A、B之间的距离,他从湖边的C处测得A在北偏西45°方向上,测得B在北偏东32°方向上,且量得B、C之间的距离为100米,根据上述测量结果,请你帮小明计算A、B之间的距离是多少?(结果精确到1米。参考数据:sin32°=0.5299,cos32°=0.8480)
已知△ABC在平面直角坐标系中的位置如图所示.
(1)分别写出图中点A和点C的坐标;
(2)画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′;
(3)求点A旋转到点A′所经过的路线长(结果保留π)
如图,点是半圆
的半径
上的动点,作
于
.点
是半圆上位于
左侧的点,连结
交线段
于
,且
.
(1)求证:是⊙O的切线.
(2)若⊙O的半径为,
,设
.
①求关于
的函数关系式.
②当时,求
的值.