已知两直线l1,l2分别经过点A(1,0),点B(-3,0),并且当两直线同时相交于y正半轴的点C时,恰好有l1⊥l2,经过点A、B、C的抛物线的对称轴与直线l2交于点K,如图所示.
(1)求点C的坐标,并求出抛物线的函数解析式;
(2)抛物线的对称轴被直线l1、抛物线、直线l2和x轴依次截得三条线段,问这三条线段有何数量关系?请说明理由;
(3)当直线l2绕点C旋转时,与抛物线的另一个交点为M,请找出使△MCK为等腰三角形的点M,简述理由,并写出点M的坐标:
某景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打6折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打8折,导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到该景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?
点O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角板的直角顶点放在点O处.
(1)如图①,将三角板MON的一边ON与射线OB重合时,则∠MOC= ;
(2)如图②,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的角平分线,求旋转角∠BON和∠CON的度数;
(3)将三角板MON绕点O逆时针旋转至图③时,∠NOC=∠AOM,求∠NOB的度数.
解方程:
(1)3x﹣4(2x+5)=x+4;
(2).
计算:
(1)(﹣2)2×7﹣62÷(﹣3)×
(2)先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣3ab2+2,其中a=﹣2,b=2.
(1)计算:(﹣4a2b4c)÷(a2b3)•2ab2
(2)计算:
(3)先化简,再求值:[(xy+2)(xy﹣2)﹣2x2y2+4]÷(xy),其中x=10,.