游客
题文

阅读下列材料并解决有关问题:
我们知道, 现在我们可以用这一结论来化简含有绝对值
的代数式,如化简代数式|m+1|+|m-2|时,可令m+1=0和m-2=0,分别求得m=-1,m=2(称-1,2分别为|m+1|与|m-2|的零点值).在实数范围内,零点值m=-1和m=2可将全体实数分成不重复且不遗漏的如下3种情况:
(1)m<-1;(2)-1≤m<2;(3)m≥2.从而化简代数式|m+1|+|m-2|可分以下3种情况:
(1)当m<-1时,原式=-(m+1)-(m-2)=-2m+1;
(2)当-1≤m<2时,原式=m+1-(m-2)=3;
(3)当m≥2时,原式=m+1+m-2=2m-1.
综上讨论,原式=
通过以上阅读,请你解决以下问题:
(1)分别求出|x-5|和|x-4|的零点值;
(2)化简代数式|x-5|+|x-4|.
(3)求代数式|x-5|+|x-4|的最小值.

科目 数学   题型 解答题   难度 中等
知识点: 非负数的性质:算术平方根
登录免费查看答案和解析
相关试题

如图,已知抛物线y=x2bxcx轴交于AB两点(A点在B点左侧),与y
轴交于点C(0,-3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D
⑴求抛物线的函数表达式;
⑵求直线BC的函数表达式;
⑶点Ey轴上一动点,CE的垂直平分线交CE于点F,交抛物线于PQ两点,且点P在第三象限.
①当线段PQ=AB,求tanCED的值;
②当以点CDE为顶点的三角形是直角三角形时,请直接写出点P的坐标.
温馨提示:考生可以根据第⑶问的题意,在图中补出图形,以便作答.

已知,△ABC为等边三角形,点D为直线BC上一动点(点D不与BC重合).以
AD为边作菱形ADEF,使∠DAF=60°,连接CF
⑴如图1,当点D在边BC上时,
求证:∠ADB=∠AFC;②请直接判断结论∠AFC=∠ACB+∠DAC是否成立;
⑵如图2,当点D在边BC的延长线上时,其他条件不变,结论∠AFC=∠ACB+∠DAC是否成立?请写出∠AFC、∠ACB、∠DAC之间存在的数量关系,并写出证明过程;
⑶如图3,当点D在边CB的延长线上时,且点AF分别在直线BC的异侧,其他条件不变,请补全图形,并直接写出∠AFC、∠ACB、∠DAC之间存在的等量关系.

一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量
2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的
成本比去年成本增加0.7x倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,
则预计今年年销售量将比去年年销售量增加x倍(本题中0<x≤11).
⑴用含x的代数式表示,今年生产的这种玩具每件的成本为________元,今年生产的这种玩具每件的出厂价为_________元.
⑵求今年这种玩具的每件利润y元与x之间的函数关系式.
⑶设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?
注:年销售利润=(每件玩具的出厂价-每件玩具的成本)×年销售量.

小刘同学在课外活动中观察吊车的工作过程,绘制了如图所示的平面图形.已知吊车吊臂的支点O距离地面的高OO=2米.当吊臂顶端由A点抬升至A点(吊臂长度不变)时,地面B处的重物(大小忽略不计)被吊至B处,紧绷着的吊缆A′B=ABAB垂直地面O′B于点BA′B垂直地面O′B于点C,吊臂长度OA=OA=10米,且cosA=sinA=

⑴求此重物在水平方向移动的距离BC
⑵求此重物在竖直方向移动的距离B′C.(结果保留根号)

如图,点AB在⊙O上,直线AC是⊙O的切线,ODOB,连接ABOC于点D
⑴求证:AC=CD
⑵若AC=2,AO=,求OD的长度.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号