二次函数f(x)的图象顶点为A(1,16),且图象在x轴上截得线段长为8.
(1)求函数f(x)的解析式;
(2)令g(x)=(2﹣2a)x﹣f(x);
①若函数g(x)在x∈[0,2]上是单调增函数,求实数a的取值范围;
②求函数g(x)在x∈[0,2]的最小值.
已知函数是奇函数.
(1)求实数m的值;
(2)是否存在实数,当
时,函数
的值域是
.若存在,求出实数
;若不存在,说明理由;
(3)令函数,当
时,求函数
的最大值.
如图,在长为10千米的河流OC的一侧有一条观光带,观光带的前一部分为曲线段OAB,设曲线段OAB为函数,
(单位:千米)的图象,且图象的最高点为
;观光带的后一部分为线段BC.
(1)求函数为曲线段OABC的函数的解析式;
(2)若计划在河流OC和观光带OABC之间新建一个如图所示的矩形绿化带MNPQ,绿化带由线段MQ,QP,PN构成,其中点P在线段BC上.当OM长为多少时,绿化带的总长度最长?
已知函数f(x)=2ax+(a∈R).
(1)当时,试判断f(x)在
上的单调性并用定义证明你的结论;
(2)对于任意的,使得f(x)≥6恒成立,求实数a的取值范围.
已知函数为幂函数,且为奇函数.
(1)求的值;
(2)求函数在
的值域.
设,a为实数.
(1)分别求;
(2)若,求a的取值范围.