已知f(x)是定义在[﹣1,1]上的奇函数,且f(1)=2,任取a,b∈[﹣1,1],a+b≠0,都有>0成立.
(1)证明函数f(x)在[﹣1,1]上是单调增函数.
(2)解不等式f(x)<f(x2).
(3)若对任意x∈[﹣1,1],函数f(x)≤2m2﹣2am+3对所有的a∈[0,]恒成立,求m的取值范围.
已知圆C:,直线
.
(1)若直线与圆C相切,求实数b的值;
(2)是否存在直线,使
与圆C交于A、B两点,且以AB为直径的圆过原点.如果存在,求出直线
的方程,如果不存在,请说明理由.
如图,三角形ABC中,AC=BC=,ABED是边长为1的正方形,平面ABED⊥底面ABC,若G、F分别是EC、BD的中点.
(1)求证:GF//底面ABC;
(2)求证:AC⊥平面EBC;
(3)求几何体ADEBC的体积V.
广雅中学在高二年级开设了,
,
三个兴趣小组,为了对兴趣小组活动的开展情况进行调查,用分层抽样方法从
,
,
三个兴趣小组的人员中,抽取若干人组成调查小组,有关数据见下表(单位:人)
兴趣小组 |
小组人数 |
抽取人数 |
![]() |
24 |
![]() |
![]() |
36 |
3 |
![]() |
48 |
![]() |
(1)求,
的值;
(2)若从,
两个兴趣小组抽取的人中选2人作专题发言,求这2人都来自兴趣小组
的概率.
设函数y=是定义在(0,+∞)上的增函数,并满足
1、求f(1)的值;
2、若存在实数m,使,求m的值
3、如果<2求x的范围