游客
题文

选修4-5:不等式选讲
设函数 的最小值为
(1)求;
(2)已知两个正数满足,求的最小值.

科目 数学   题型 解答题   难度 较易
知识点: 绝对值不等式
登录免费查看答案和解析
相关试题

已知极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线的极坐标方程为
(Ⅰ)求的直角坐标方程;
(Ⅱ)直线为参数)与曲线C交于两点,与轴交于,求的值.

如图,已知均在⊙O上,且为⊙O的直径。
(Ⅰ)求的值;
(Ⅱ)若⊙O的半径为交于点,且
为弧的三等分点,求的长.

已知的导函数,且,设

(Ⅰ)讨论在区间上的单调性;
(Ⅱ)求证:
(Ⅲ)求证:

四棱锥中,底面为平行四边形,侧面,已知
(Ⅰ)求证:
(Ⅱ)在SB上选取点P,使SD//平面PAC ,并证明;
(Ⅲ)求直线与面所成角的正弦值。

(本小题满分12分)
一个不透明的袋子中装有4个形状相同的小球,分别标有不同的数字2,3,4,,现从袋中随机摸出2个球,并计算摸出的这2个球上的数字之和,记录后将小球放回袋中搅匀,进行重复试验。记A事件为“数字之和为7”.试验数据如下表

摸球总次数
10
20
30
60
90
120
180
240
330
450
“和为7”出现的频数
1
9
14
24
26
37
58
82
109
150
“和为7”出现的频率
0.10
0.45
0.47
0.40
0.29
0.31
0.32
0.34
0.33
0.33

(参考数据:
(Ⅰ)如果试验继续下去,根据上表数据,出现“数字之和为7”的频率将稳定在它的概率附近。试估计“出现数字之和为7”的概率,并求的值;
(Ⅱ)在(Ⅰ)的条件下,设定一种游戏规则:每次摸2球,若数字和为7,则可获得奖金7元,否则需交5元。某人摸球3次,设其获利金额为随机变量元,求的数学期望和方差。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号