游客
题文


已知椭圆的一个焦点为,左右顶点分别为.经过点的直线与椭圆交于两点.
(Ⅰ)求椭圆方程;
(Ⅱ)记的面积分别为,求的最大值.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

D.(选做题选修 4 - 4

a > 0 , | x - 1 | < a 3 , | y - 2 | < a 3 ,求证: | 2 x + y - 4 | < a

C.(选做题选修 4 - 3 )在平面之间坐标系 xOy 中,已知直线 I 的参数方程式为 x = 1 + 1 2 t y = 3 2 t ( t 为参数 )

椭圆 C 的参数方程为 x = cos θ , y = 2 sin θ ( θ 为参数).设直线 I 与椭圆 C 相交于 A , B 两点, 求线段 AB 的长.

B.(选择题选修 4-2)已知矩阵 A = 1 2 0 - 2 , 矩阵 B 的逆矩阵 B - 1 = 1 - 1 2 0 2 , 求矩阵 AB .

A.(选做题选修 4 - 1 )如图,在 ABC 中, ABC = 90 ° BD AC D 为垂足, E BC 得中点,求证: EDC = ABD

image.png

U = { 1 , 2 , , 100 } . 对数列 a n n N * U 的子集 T , 若 T = , 定义 S T = 0 ;

T = t 1 , t 2 , , t k , 定 义 S T = a t 1 + a t 2 + + a t k . 例 如 : T = { 1 , 3 , 66 } 时 ,

S T = a 1 + a 3 + a 66 . 现设 a n n N * 是公比为 3 的等比数列, 且当 T = { 2 , 4 } 时,

S T = 30

(1) 求数列 a n 的通项公式;

(2) 对任意正整数 k ( 1 k 100 ) , 若 T { 1 , 2 , , k } , 求证: S T < a k + 1 ;

(3) 设 C U , D U , S C S D , 求证: S C + S C D 2 S D .

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号