记 U = { 1 , 2 , ⋯ , 100 } . 对数列 a n n ∈ N * 和 U 的子集 T , 若 T = ∅ , 定义 S T = 0 ; 若
T = t 1 , t 2 , ⋯ , t k , 定 义 S T = a t 1 + a t 2 + ⋯ + a t k . 例 如 : T = { 1 , 3 , 66 } 时 ,
S T = a 1 + a 3 + a 66 . 现设 a n n ∈ N * 是公比为 3 的等比数列, 且当 T = { 2 , 4 } 时,
S T = 30
(1) 求数列 a n 的通项公式;
(2) 对任意正整数 k ( 1 ≤ k ≤ 100 ) , 若 T ⊆ { 1 , 2 , ⋯ , k } , 求证: S T < a k + 1 ;
(3) 设 C ⊆ U , D ⊆ U , S C ≥ S D , 求证: S C + S C ∩ D ≥ 2 S D .
已知指数函数,当时,有,解关于x的不等式
已知函数. (Ⅰ)若函数在上是增函数,求正实数的取值范围; (Ⅱ)若,且,设,求函数在上的最大值和最小值.
已知椭圆:的右焦点,过原点和轴不重合的直线与椭圆相交于,两点,且,最小值为. (Ⅰ)求椭圆的方程; (Ⅱ)若圆:的切线与椭圆相交于,两点,当,两点横坐标不相等时,问:与是否垂直?若垂直,请给出证明;若不垂直,请说明理由.
如图,在直三棱柱中,平面侧面. (Ⅰ)求证:; (Ⅱ)若直线与平面所成角是,锐二面角的平面角是,试判断与的大小关系,并予以证明.
设Sn是正项数列的前n项和, . (I)求数列的通项公式; (II)的值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号