现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了人,他们月收入的频数分布及对“楼市限购令”赞成人数如下表.
月收入(单位百元) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
频数 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
赞成人数 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
(I)由以上统计数据填下面列联表并问是否有
%的把握认为“月收入以
为分界点”对“楼市限购令”的态度有差异;
|
月收入低于![]() |
月收入低于![]() |
合计 |
赞成 |
![]() |
![]() |
|
不赞成 |
![]() |
![]() |
|
合计 |
|
|
|
(II)若对月收入在,
的被调查人中各随机选取两人进行追踪调查,记选中的
人中不赞成“楼市限购令”人数为
,求随机变量
的分布列及数学期望.
参考数据:
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
(1)化简;
(2)化简
(本小题满分13分)
设M是由满足下列条件的函数构成的集合:“①方程
有实数根;②函数
的导数
满足
”.
(1)判断函数是否是集合M中的元素,并说明理由;
(2)若集合M中的元素具有下面的性质:“若的定义域为D,则对于任意
,都存在
,使得等式
成立”,
试用这一性质证明:方程
只有一个实数根;
(3)设是方程
的实
数根,求证:对于
定义域中的任意的
,当
且
时,
.
(本小题满分13分)
如图,设抛物线的准线与
轴交于
,焦点为
;以
为焦点,离心率
的椭圆
与抛物线
在
轴上方的交点为
,延长
交抛物线于点
,
是抛物线
上一动点,且M在
与
之间运动.
(1)当时,求椭圆
的方程;
(2)当的边长恰好是三个连续的自然数时,求
面积的最大值.
(本小题满分13分)
已知△ABC中,角A、B、C成等差数列,求证:+=
(本小题满分12分)
已知如图所示的程序框图(未完成),设当箭头a指向①时,输出的结果为S=m,当箭头a指向②时,输出的结果为S=n,求m+n的值.