游客
题文

(本小题满分13分)
设M是由满足下列条件的函数构成的集合:“①方程有实数根;②函数的导数满足”.
(1)判断函数是否是集合M中的元素,并说明理由;
(2)若集合M中的元素具有下面的性质:“若的定义域为D,则对于任意,都存在,使得等式成立”,试用这一性质证明:方程只有一个实数根;
(3)设是方程的实数根,求证:对于定义域中的任意的,当时,

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题


(Ⅰ)若上存在单调递增区间,求的取值范围;
(Ⅱ)当时,的最小值为,求在该区间上的最大值

为了在夏季降温和冬季供暖时减少能源损耗 ,房屋的屋顶和外墙需要建造隔热层,某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用(单位:万元)与隔热层厚度(单位:cm)满足关系:,若不建隔热层,每年能源消耗费用为8万元.设为隔热层建造费用与20年的能源消耗费用之和.
(Ⅰ)求的值及的表达式;
(Ⅱ)隔热层修建多厚时,总费用达到最小,并求最小值

已知函数
(Ⅰ)若在区间上是增函数,求实数的取值范围;
(Ⅱ)若的极值点,求上的最大值和最小值.

已知函数)为偶函数,若对于任意都有成立,且的最小值是为.将函数的图象向右平移个单位后,得到函数,求的单调递减区间,确定其对称轴。

是否存在使等式,同时成立?若存在,求出的值;若不存在,请说明理由。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号