设
(Ⅰ)若在
上存在单调递增区间,求
的取值范围;
(Ⅱ)当时,
在
的最小值为
,求
在该区间上的最大值
执行下面框图所描述的算法程序,记输出的一列数依次为,
,…,
,
,
.
(1)若输入
,写出输出结果;
(2)若输入,求数列
的通项公式;
(3)若输入,令
,求常数
(
),使得
是等比数列.
(本小题满分12分)
一个几何体是由圆柱和
三棱锥
组合而成,点
、
、
在圆
的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图所示,其中
,
,
,
.
(1)求证:;
(2)求二面角的平面角的大小.
(本小题满分12分)
为了评估天气对大运会的影响,制定相应预案,深圳市气象局通过对最近50多年的气象数据资料的统计分析,发现8月份是本市雷电天气高峰期,在31天中平均发生雷电14.57天如图.如果用频率作为概率的估计值,并假定每一天发生雷电的概率均相等,且相互独立.
(1)求在大运会开幕(8月12日)后的前3天比赛中,恰好有2天发生雷电天气的概率(精确到0.01);
(2)设大运会期间(8月12日至23日,共12天),发生雷电天气的天数为,求
的数学期望和方差.
已知向量向量
,
(1)化简的解析式,并求函数的单调递减区间;
(2)在△ABC中,分别是角A,B,C的对边,已知
的面积为
,求
.
已知f(x)=x2-2(n+1)x+n2+5n-7,
(1)设f(x)的图象的顶点的纵坐标构成数列{an},求证:{an}为等差数列;
(2)设f(x)的图象的顶点到x轴的距离构成数列{bn},求{bn}的前n项和Sn.